Friday, February 22

What is the Associative Property


The addition or multiplication of a collection of integer is the same separately from of how the numbers are grouped. A binary operation * is assumed to be associative if any three elements a, b, c of a set a *(b * c) = (a * b) * c. Multiplication of real integers are associative but the division of real integers are not assosiative. And addition is associative but subtraction is not.

What is the Associative Properties

What is the associative property?..The associative property is a property which always involve 3 or more numbers in calculations. The parenthesis indicates the terms that are consider one unit. The gathering (Associative Property) are within the parenthesis. Hence, the figures are 'associated' together. In multiplication, the result is always the same regardless of their combination.

There were two properties are involved in what is the associative property,

They were, Associative property in addition

Associative property in multiplication


Examples for what is the Associative Property (Addition and Multiplication)

Example for what is the Associative property in addition:

Let a, b, c be any real numbers, then

A + (B + C) = (A +B) + C

Let A = 5, B =9, C = 8

L.H.S = 5 + (9 + 8) = 5 + (17) = 22

R.H.S = (5 + 9) + 8 = (14) + 8 = 22

L.H.S = R.H.S

More Examples for addition:

When we change the groupings of addends, the sum does not change:

(8 + 5) + 9 = 22               (or)

8 + (5 + 9)  = 22

(9 + 1) +8 = 18                 (or)

9 + (1 + 8) = 18
Just consider that when the grouping of addends vary, the sum leftovers the same.

Example for what is the Associative property in multiplication:

Let A, B, C be any real numbers, then

A * (B * C) = (A *B) * C

Let, A = 5, B =9, C = 8

L.H.S = 5 * (9 * 8) = 5 * (72) = 360

R.H.S = (5 * 9) * 8 = (45) * 8 = 360

L.H.S = R.H.S

More Examples for Multiplication:

When we change the groupings of factors, the product does not change:

(1 x 9) x 5 = 45          or

1 x (9 x 5) = 45

(2 * 5) * 10 = 100      or

2 * (5 * 10) = 100

Just remember that when the grouping of factors changes, the product remains the same.

No comments:

Post a Comment