Thursday, February 7

Vertical Stretch and Compression


Vertical stretch and compression mean transforming the graph based on the scale factors. Here we will see how we are performing the stretching and compression of graph using the scale factor. Stretching the graph is nothing but we are transforming the graph away from axis. Compression of the graph means squeezing the given graph towards the axis. We will see some example problems foe vertical stretch and compression of the graphs.
Vertical Stretch:

Vertical stretch is nothing but the stretching the graph away from x – axis. If the given function is f(x) then the vertical stretch of the given function is y = a f(x). Where 0 < a < 1

Example for vertical stretch:

Graph the following function and its vertical stretch. Where f(x) = x2 – 1.6x and the vertical stretch scale factor of the function f (x) is 0.4.

Solution:

Given function f(x) = x2 – 1.6x

We can write the given functions like y = x2 – 1.6x

If we want to graph the function we have to find the x and y intercept of the original function.

For x – intercept of the given function

We have to plug y = 0

So 0 = x2 – 1.6x

x (x – 1.6) = 0

x = 0 and x = 1.6

So the x intercept point is (0, 0) and (1.6, 0)

For y – intercept of the given function

We have to plug x = 0

So y = (x)2 – 1.6(0) = 0

So y intercept point is (0, 0)

Now we have to graph the vertical stretch function.

The vertical stretch function is

f(x) = a f (x)

So y = 0.4 (x2 – 1.6x)

If we graph both the function we will get the following graph

vertical stretch - stretch graph
Vertical Compression:

Vertical compression is nothing but the squeezing the graph towards the x – axis. If the given function is f(x) then the vertical compression of the given function is y = af(x). Where a > 1

Example for vertical compression:

Graph the following function and its vertical compression. Where f(x) = x2 – 3.5x and the vertical compression scale factor of the function f (x) is 1.25

Solution:

The given function f(x) = x2 – 3.5x

We can write the given functions like y = x2 – 3.5x

If we want to graph the function we have to find the x and y intercept of the original function.

For x – intercept of the original function

We have to plug y = 0

So 0 = x2 – 3.5x

x (x – 3.5) = 0

x = 0 and x = 3.5

So the x intercept point is (0, 0) and (3.5, 0)

For y – intercept of the original function

We have to plug x = 0

So y = (x)2 – 3.5(0) = 0

So y intercept point is (0, 0)

Now we have to graph the vertical compression function.

The vertical compression function is

f(x) = a f (x)

So y = 1.25 (x2 – 3.5x)

No comments:

Post a Comment