Thursday, September 9

8th grade math problems

In this blog we will learn about 8th grade math problems,we can see one example problem of 8th grade math problems given below:
Solve: 16(s – 4) – 26s - 21 = 9(s + 8)

Solution:

Given expression is,

16(s – 4) – 26s - 21 = 9(s + 8)

Multiplying the integer terms

16s - 64 – 26s - 21 = 9s + 72

Grouping the above terms

-10s - 85 = 9s + 72

Add 8 on both sides

-10s + 85 – 85 = 9s + 72 + 85

Grouping the above terms

-10s = 9s + 157

Subtract 9s by on both sides

-10s – 9s = 9s + 157 – 9s

Grouping the above terms

-19s = 157

Divide -4 on both sides

s = -157/19

Answer: s = -157/19.Next we will learn about an grade 6 math probability example.Suppose the rectangle is divided into 4 parts, 2 parts of the rectangle are colored as pink ,one part of the rectangle is divided as blue and the one part is colored as yellow find the probability of the blue region ?

Solution:

Here the rectangle is divided into 4 parts so it is the total number it will be represents in the denominator and only one part is colored as blue region it will be represents in the numerator so the probability of the blue region will be shown as below ,

¼=0.25In the next blog we will learn about standard form,hope you like the example of 8th grade math problems,please leave your comments if you have any doubts.

collinear points

In this blog we will learn about collinear points.Collinear points are the points that lie on the assonant distinction whereas the non-collinear points do not lie on the assonant pipe.The erect blood can ever be haggard finished two points, so the two points are always collinear.A credit, on which points lie, specifically if it is akin to a geometric amount much as a triangle, is sometimes titled an alinement.We can use interval expression to chance out whether the relinquished ternary points are collinear or not.We will now see one example of square inch calculator,

1. Convert the area of 2.2 sq yards into square inches using calculator.

Solution:

1 square yard = 1296 square inches.

2.2 square yard = 2.2 *1296 square inches

2.2 square yard = 2851.2 square inches

2. Find the area of 3 square foot in terms of square inches.

Solution:

1 square inch = 0.006944 square foot.

1 square foot = square inches

3 square foot = square inches.

= 432 square inches.

3. convert the area of 25 square centimeters into square inches.In the next blog we will learn about statistics.Hope you like the above example of collinear points,please leave your comments if you have any doubts.

examples of probability

In this blog we will learn about examples of probability,we can one one example of probability given below.

If there are 6 apples, 3 oranges, and 1 banana in a basket, what is the probability of choosing an apple without looking in the basket?

Solution for example of probability:

P(choosing an apple)= 6/10 = 3/5 = 0.6 = 60%

The numerator is 6 because there are 6 apples in the basket, therefore six outcomes. the total number of outcomes = 10.Next we will learn about dividing polynomials calculator,we can see one example here:

Solve divide polynomial

Solution:-

Given :


= -

=

Explanation:-

First to separate the equation by denominator then divide both sides equation. Finally we got an answer as .In the blog we will learn about area of circle.Hope you like the above example of examples of probability,please leave your comments if you have any doubts.



Friday, August 20

square root of 15

We can learn about square root of 15, and we can do this with the help of an example.

The example problems based on square root of 15 is given below that,

Example 1:

Calculate the square root of 15.

Solution:

Step 1:

Here, square root of 15 is nearly equal values between 32 and 42. Because 32 = 9 and 42 = 16.

Step 2:

So, now divide 15 by minimum square value of 3.

Step 3:

Now, take the average value for 5 and 3.

Step 4:

Now, divide 15 by 4

Step 5:

Now, take the average value for 3.75 and 4.

In the coming blog we will learn about surface of a rectangle and integers.Please leave your comments if you have any doubts.

vertex formula

In this blog let us learn about vertex formula,this can be seen with the help of an example,

Example problem 1:

Determine the vertex of y = x2 + 8x + 10 using the vertex formula method.

Solution:

The given function y = x2 + 8x + 10 is compared to standard form y = ax2 + b x + c, then we get

a = 1, b = 8 and c = 10.

Substitute a and b values in the x-coordinate of the vertex formula,

h = = = -4

Substitute the x-coordinate of the vertex value -4 into the function to get the y-value of the vertex.

y = x2 + 8x + 10

y = (-4)2 + 8(-4) + 10 = 16 – 32 + 10 = -6

So, the vertex of y = x2 + 8x + 10 is (-4, -6).In the coming blogs we will also learn about binomial distribution and about mean symbol in detail.Hope you like the above example of vertex formula,please leave your comments if you have any doubts.

Tuesday, August 17

Ogive Graph


Most of the students look out for a graph example or an image of the ogive graph,given below is the example of an ogive graph.

This was an example of ogive graph,in the coming blogs we will learn about geometry theorems list and about slope.Hope you like the above example of Ogive Graph,please leave your comments if you have any doubts.

Hexagon shape



Hexagon shape:Usually students look for an example of a hexagon shape,given below is the example of a hexagon shape, this is how a hexagon looks,next we will see the meaning of hexagon dimensions,hexagonal prism is one type of seven dimensional objects. The seven dimensions are length, width & height. If any seven lines which are perpendicular to each other it is also think about as seven dimensional.In the next blog we will learn about statistics..