Wednesday, June 5

Figuring Volume of a Structure

Volume of structure
Volume is how much three-dimensional space a substance (solid, liquid, gas, or plasma) or shape occupies. The volume of a container is generally understood to be the capacity of the container, i. e. the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces.
Volume is measured in "cubic" units.


Volume of Cylinder
A cylinder is a solid that has two parallel faces which are congruent circles. These faces form the bases of the cylinder. The cylinder has one curved surface. The height of the cylinder is the perpendicular distance between the two bases.
The volume of a cylinder is given by the formula:
Volume = Area of base × height

V =   r2h where r = radius of cylinder and h is the height or length of cylinder.


Volume of hollow cylinder



Volume of hollow cylinder
V=πR2h-πr2h
Where R is the radius of the outer surface and r is the radius of the inner surface.

Volume of Cone


A cone is a solid with a circular base. It has a curved surface which tapers (i.e. decreases in size) to a vertex at the top. The height of the cone is the perpendicular distance from the base to the vertex.

Volume of cone = 1/3 Area of base × height
V = 1/3πr2h where r is the radius of the base and h is the height of the prism.

Volume of Pyramid


A pyramid is a solid with a polygonal base and several triangular lateral faces. The pyramid is named after the shape of its base. For example, rectangular pyramid, triangular pyramid.
The lateral faces meet at a common vertex. The height of the pyramid is the perpendicular distance from the base to the vertex.

The volume of a pyramid is given by the formula:

Volume of pyramid =  1/3Area of base × height

V = 1/3Axh where A is the area of the base and h is the height of the pyramid.

No comments:

Post a Comment