Monday, May 13

Geometry Reflections


In geometric, the determination of reflection of a point in a line translation is performed only through a given point or line. In reflection of a point in a line, the basic ideas of reflection are the transformation of a point to a reflected point that is the equal length of the opposite side of a  line. The transformation of  reflections in two right angular axes produce a rotation of straight angle (180°), that is a half turn.

Reflection of a point:

Reflection:

The reflection is the "flip or mirror image" of it over a line.  So, the actual and mirror images are identical to each other.

The two very common reflections of polygons are given by

Horizontal reflections.

Vertical reflections.

The colored vertices used for each of the triangle.  The line of reflection is halfway from both red points, blue points, and green points. The line of reflection is directly in the center of both points.

Reflection of  a point in a line to describe the X-axis is consider the mirror line or axis of reflection. Therefore, we change the given geometric object point  into x = x  and y = -y.

geometry reflections

Reflection of  a point in a line to describe the Y-axis is consider the mirror line or axis of reflection.. Therefore, we change the given geometric object point  into x = -x  and y = y.

geometry reflections

Reflection Example:

We take a shape of triangle, Learn horizontal reflection assists, the transformation of the geometric triangle of co-ordinates are P, Q, and R. It is transformed by using the horizontal reflection, that is the horizontal line y = x.

Solution:

Step 1: To draw the triangle object from the given co-ordinates are P, Q, and R in the X-Y plane.

geometry reflections

Step 2:  To draw the horizontal line or mirror line of that triangle PQR, and draw the perpendicular line to the horizontal line or mirror line from each co-ordinates of  given triangular object. And then measure the distance of each perpendicular lines are y1, y2, y3.

geometry reflections

Step 3:  To plot the mirrored points are P', Q', R', the same vertical distance from the horizontal line or mirror line.

geometry reflections

Step 4:  To join the plotted points P', Q', R'. We get the horizontally reflected triangular object.

geometry reflections

Step 5:   This is required horizontal reflections of triangular object.

Horizontal reflection of X- axis:

Horizontal reflection assist that concepts to describe the x-axis are considering the mirror line. Then change all the coordinates of the given geometric object into the x = x and y = -y. For example,

geometry reflections

Saturday, May 11

Common Logarithm Table


A numerical expressipon may involve multiplication, division, or exponents of large numbers. In all such calculations, the log tables prove to be an effective tool in simplyfying the complicated computations. Before seeing the common logarithm table, let us learn what characteristic and mantissa is.

In general, the logarithm of any number "n" can be expresed as follows:
log n = p + log m, where p is an integer and 1 ≤ m < 10.
"p" is the integral of log n, is defined as the characteristic and th elog m is defined as mantissa.
Since log 1 = 0 and log 10 = 1 and 1 ≤ m < 10, we have log m as a decimal.
Note: The charcteristic of a number greater than 1 is one less than the number of digits in its integral part.

Ex: Charcteristic of 36177 is 4
Total number of digits = 5, one less than 5 is 4.
Consider log 36.122
We have only two digits in the integral part. So, characteristic of 36.122 is 1.

Common logarithm table from 1 to 4.99


101.10.04139272.10.32221933.10.49136174.10.6127839
1.0010.00043411.110.0453232.110.32428253.110.49276044.110.6138418
1.0020.00086771.120.0492182.120.32633593.120.49415464.120.6148972
1.0030.00130091.130.05307842.130.32837963.130.49554434.130.6159501
1.0040.00173371.140.05690492.140.33041383.140.49692964.140.6170003
1.0050.00216611.150.06069782.150.33243853.150.49831064.150.6180481
1.0060.0025981.160.0644582.160.33445383.160.49968714.160.6190933
1.0070.00302951.170.06818592.170.33645973.170.50105934.170.6201361
1.0080.00346051.180.0718822.180.33845653.180.50242714.180.6211763
1.0090.00389121.190.0755472.190.34044413.190.50379074.190.622214
1.010.00432141.20.07918122.20.34242273.20.505154.20.6232493
1.0110.00475121.210.08278542.210.34439233.210.5065054.210.6242821
1.0120.00518051.220.08635982.220.3463533.220.50785594.220.6253125
1.0130.00560951.230.08990512.230.34830493.230.50920254.230.6263404
1.0140.0060381.240.09342172.240.3502483.240.5105454.240.6273659
1.0150.0064661.250.096912.250.35218253.250.51188344.250.6283889
1.0160.00689371.260.10037052.260.35410843.260.51321764.260.6294096
1.0170.0073211.270.10380372.270.35602593.270.51454784.270.6304279
1.0180.00774781.280.107212.280.35793483.280.51587384.280.6314438
1.0190.00817421.290.11058972.290.35983553.290.51719594.290.6324573
1.020.00860021.30.11394342.30.36172783.30.51851394.30.6334685
1.0210.00902571.310.11727132.310.3636123.310.5198284.310.6344773
1.0220.00945091.320.12057392.320.3654883.320.52113814.320.6354837
1.0230.00987561.330.12385162.330.36735593.330.52244424.330.6364879
1.0240.01031.340.12710482.340.36921593.340.52374654.340.6374897
1.0250.01072391.350.13033382.350.37106793.350.52504484.350.6384893
1.0260.01114741.360.13353892.360.3729123.360.52633934.360.6394865
1.0270.01157041.370.13672062.370.37474833.370.52762994.370.6404814
1.0280.01199311.380.13987912.380.3765773.380.52891674.380.6414741
1.0290.01241541.390.14301482.390.37839793.390.53019974.390.6424645
1.030.01283721.40.1461282.40.38021123.40.53147894.40.6434527
1.0310.01325871.410.14921912.410.3820173.410.53275444.410.6444386
1.0320.01367971.420.15228832.420.38381543.420.53402614.420.6454223
1.0330.01410031.430.1553362.430.38560633.430.53529414.430.6464037
1.0340.01452051.440.15836252.440.38738983.440.53655844.440.647383
1.0350.01494041.450.1613682.450.38916613.450.53781914.450.64836
1.0360.01535981.460.16435292.460.39093513.460.53907614.460.6493349
1.0370.01577881.470.16731732.470.3926973.470.54032954.470.6503075
1.0380.01619741.480.17026172.480.39445173.480.54157924.480.651278
1.0390.01661561.490.17318632.490.39619933.490.54282544.490.6522463
1.040.01703331.50.17609132.50.397943.50.5440684.50.6532125
1.0410.01745071.510.17897692.510.39967373.510.54530714.510.6541765
1.0420.01786771.520.18184362.520.40140053.520.54654274.520.6551384
1.0430.01828431.530.18469142.530.40312053.530.54777474.530.6560982
1.0440.01870051.540.18752072.540.40483373.540.54900334.540.6570559
1.0450.01911631.550.19033172.550.40654023.550.55022844.550.6580114
1.0460.01953171.560.19312462.560.408243.560.551454.560.6589648
1.0470.01994671.570.19589972.570.40993313.570.55266824.570.6599162
1.0480.02036131.580.19865712.580.41161973.580.5538834.580.6608655
1.0490.02077551.590.20139712.590.41329983.590.55509444.590.6618127
1.050.02118931.60.204122.60.41497333.60.55630254.60.6627578
1.0510.02160271.610.20682592.610.41664053.610.55750724.610.6637009
1.0520.02201571.620.2095152.620.41830133.620.55870864.620.664642
1.0530.02242841.630.21218762.630.41995573.630.55990664.630.665581
1.0540.02284061.640.21484382.640.42160393.640.56110144.640.666518
1.0550.02325251.650.21748392.650.42324593.650.56229294.650.667453
1.0560.02366391.660.22010812.660.42488163.660.56348114.660.6683859
1.0570.0240751.670.22271652.670.42651133.670.56466614.670.6693169
1.0580.02448571.680.22530932.680.42813483.680.56584784.680.6702459
1.0590.0248961.690.22788672.690.42975233.690.56702644.690.6711728
1.060.02530591.70.23044892.70.43136383.70.56820174.70.6720979
1.0610.02571541.710.23299612.710.43296933.710.56937394.710.6730209
1.0620.02612451.720.23552842.720.43456893.720.57054294.720.673942
1.0630.02653331.730.23804612.730.43616263.730.57170884.730.6748611
1.0640.02694161.740.24054922.740.43775063.740.57287164.740.6757783
1.0650.02734961.750.2430382.750.43933273.750.57403134.750.6766936
1.0660.02775721.760.24551272.760.44090913.760.57518784.760.677607
1.0670.02816441.770.24797332.770.44247983.770.57634144.770.6785184
1.0680.02857131.780.250422.780.44404483.780.57749184.780.6794279
1.0690.02897771.790.2528532.790.44560423.790.57863924.790.6803355
1.070.02938381.80.25527252.80.4471583.80.57978364.80.6812412
1.0710.02978951.810.25767862.810.44870633.810.5809254.810.6821451
1.0720.03019481.820.26007142.820.45024913.820.58206344.820.683047
1.0730.03059971.830.26245112.830.45178643.830.58319884.830.6839471
1.0740.03100431.840.26481782.840.45331833.840.58433124.840.6848454
1.0750.03140851.850.26717172.850.45484493.850.58546074.850.6857417
1.0760.03181231.860.26951292.860.4563663.860.58658734.860.6866363
1.0770.03221571.870.27184162.870.45788193.870.5877114.870.687529
1.0780.03261881.880.27415782.880.45939253.880.58883174.880.6884198
1.0790.03302141.890.27646182.890.46089783.890.58994964.890.6893089
1.080.03342381.90.27875362.90.4623983.90.59106464.90.6901961
1.0810.03382571.910.28103342.910.4638933.910.59217684.910.6910815
1.0820.03422731.920.28330122.920.46538293.920.59328614.920.6919651
1.0830.03462851.930.28555732.930.46686763.930.59439264.930.6928469
1.0840.03502931.940.28780172.940.46834733.940.59549624.940.6937269
1.0850.03542971.950.29003462.950.4698223.950.59659714.950.6946052
1.0860.03582981.960.29225612.960.47129173.960.59769524.960.6954817
1.0870.03622951.970.29446622.970.47275643.970.59879054.970.6963564
1.0880.03662891.980.29666522.980.47421633.980.59988314.980.6972293
1.0890.03702791.990.29885312.990.47567123.990.60097294.990.6981005
1.090.037426520.3010330.477121340.60206
1.0910.03782482.010.30319613.010.47856654.010.6031444

1.0920.03822262.020.30535143.020.48000694.020.6042261

1.0930.03862022.030.3074963.030.48144264.030.605305

1.0940.03901732.040.30963023.040.48287364.040.6063814

1.0950.03941412.050.31175393.050.48429984.050.607455

1.0960.03981062.060.31386723.060.48572144.060.608526

1.0970.04020662.070.31597033.070.48713844.070.6095944

1.0980.04060232.080.31806333.080.48855074.080.6106602

1.0990.04099772.090.32014633.090.48995854.090.6117233


Common logarithm table from 5 to 9.99


50.6989760.778151370.84509880.9030990.9542425
5.010.69983776.010.77887457.010.8457188.010.90363259.010.9547248
5.020.70070376.020.77959657.020.84633718.020.90417449.020.9552065
5.030.7015686.030.78031737.030.84695538.030.90471559.030.9556878
5.040.70243056.040.78103697.040.84757278.040.9052569.040.9561684
5.050.70329146.050.78175547.050.84818918.050.90579599.050.9566486
5.060.70415056.060.78247267.060.84880478.060.9063359.060.9571282
5.070.7050086.070.78318877.070.84941948.070.90687359.070.9576073
5.080.70586376.080.78390367.080.85003338.080.90741149.080.9580858
5.090.70671786.090.78461737.090.85064628.090.90794859.090.9585639
5.10.70757026.10.78532987.10.85125838.10.9084859.10.9590414
5.110.70842096.110.78604127.110.85186968.110.90902099.110.9595184
5.120.709276.120.78675147.120.852488.120.9095569.120.9599948
5.130.71011746.130.78746057.130.85308958.130.91009059.130.9604708
5.140.71096316.140.78816847.140.85369828.140.91062449.140.9609462
5.150.71180726.150.78887517.150.8543068.150.91115769.150.9614211
5.160.71264976.160.78958077.160.8549138.160.91169029.160.9618955
5.170.71349056.170.79028527.170.85551928.170.91222219.170.9623693
5.180.71432986.180.79098857.180.85612448.180.91275339.180.9628427
5.190.71516746.190.79169067.190.85672898.190.91328399.190.9633155
5.20.71600336.20.79239177.20.85733258.20.91381399.20.9637878
5.210.71683776.210.79309167.210.85793538.210.91434329.210.9642596
5.220.71767056.220.79379047.220.85853728.220.91487189.220.9647309
5.230.71850176.230.7944887.230.85913838.230.91539989.230.9652017
5.240.71933136.240.79518467.240.85973868.240.91592729.240.965672
5.250.72015936.250.795887.250.8603388.250.91645399.250.9661417
5.260.72098576.260.79657437.260.86093668.260.916989.260.966611
5.270.72181066.270.79726757.270.86153448.270.91750559.270.9670797
5.280.72263396.280.79795967.280.86213148.280.91803039.280.967548
5.290.72345576.290.79865067.290.86272758.290.91855459.290.9680157
5.30.72427596.30.79934057.30.86332298.30.91907819.30.9684829
5.310.72509456.310.80002947.310.86391748.310.9196019.310.9689497
5.320.72591166.320.80071717.320.86451118.320.92012339.320.9694159
5.330.72672726.330.80140377.330.8651048.330.9206459.330.9698816
5.340.72754136.340.80208937.340.86569618.340.92116619.340.9703469
5.350.72835386.350.80277377.350.86628738.350.92168659.350.9708116
5.360.72916486.360.80345717.360.86687788.360.92220639.360.9712758
5.370.72997436.370.80413947.370.86746758.370.92272559.370.9717396
5.380.73078236.380.80482077.380.86805648.380.9232449.380.9722028
5.390.73158886.390.80550097.390.86864448.390.9237629.390.9726656
5.40.73239386.40.806187.40.86923178.40.92427939.40.9731279
5.410.73319736.410.8068587.410.86981828.410.9247969.410.9735896
5.420.73399936.420.8075357.420.87040398.420.92531219.420.9740509
5.430.73479986.430.8082117.430.87098888.430.92582769.430.9745117
5.440.73559896.440.80888597.440.87157298.440.92634249.440.974972
5.450.73639656.450.80955977.450.87215638.450.92685679.450.9754318
5.460.73719266.460.81023257.460.87273888.460.92737049.460.9758911
5.470.73798736.470.81090437.470.87332068.470.92788349.470.97635
5.480.73878066.480.8115757.480.87390168.480.92839599.480.9768083
5.490.73957236.490.81224477.490.87448188.490.92890779.490.9772662
5.50.74036276.50.81291347.50.87506138.50.92941899.50.9777236
5.510.74115166.510.8135817.510.87563998.510.92992969.510.9781805
5.520.74193916.520.81424767.520.87621788.520.93043969.520.9786369
5.530.74272516.530.81491327.530.8767958.530.9309499.530.9790929
5.540.74350986.540.81557777.540.87737138.540.93145799.540.9795484
5.550.7442936.550.81624137.550.8779478.550.93196619.550.9800034
5.560.74507486.560.81690387.560.87852188.560.93247389.560.9804579
5.570.74585526.570.81756547.570.87909598.570.93298089.570.9809119
5.580.74663426.580.81822597.580.87966928.580.93348739.580.9813655
5.590.74741186.590.81888547.590.88024188.590.93399329.590.9818186
5.60.7481886.60.81954397.60.88081368.60.93449859.60.9822712
5.610.74896296.610.82020157.610.88138478.610.93500329.610.9827234
5.620.74973636.620.8208587.620.8819558.620.93550739.620.9831751
5.630.75050846.630.82151357.630.88252458.630.93601089.630.9836263
5.640.75127916.640.82216817.640.88309348.640.93651379.640.984077
5.650.75204846.650.82282167.650.88366148.650.93701619.650.9845273
5.660.75281646.660.82347427.660.88422888.660.93751799.660.9849771
5.670.75358316.670.82412587.670.88479548.670.93801919.670.9854265
5.680.75434836.680.82477657.680.88536128.680.93851979.680.9858754
5.690.75511236.690.82542617.690.88592638.690.93901989.690.9863238
5.70.75587496.70.82607487.70.88649078.70.93951939.70.9867717
5.710.75663616.710.82672257.710.88705448.710.94001829.710.9872192
5.720.7573966.720.82736937.720.88761738.720.94051659.720.9876663
5.730.75815466.730.82801517.730.88817958.730.94101429.730.9881128
5.740.75891196.740.82865997.740.8887418.740.94151149.740.988559
5.750.75966786.750.82930387.750.88930178.750.94200819.750.9890046
5.760.76042256.760.82994677.760.88986178.760.94250419.760.9894498
5.770.76117586.770.83058877.770.8904218.770.94299969.770.9898946
5.780.76192786.780.83122977.780.89097968.780.94349459.780.9903389
5.790.76267866.790.83186987.790.89153758.790.94398899.790.9907827
5.80.7634286.80.83250897.80.89209468.80.94448279.80.9912261
5.810.76417616.810.83314717.810.8926518.810.94497599.810.991669
5.820.7649236.820.83378447.820.89320688.820.94546869.820.9921115
5.830.76566866.830.83442077.830.89376188.830.94596079.830.9925535
5.840.76641286.840.83505617.840.89431618.840.94645239.840.9929951
5.850.76715596.850.83569067.850.89486978.850.94694339.850.9934362
5.860.76789766.860.83632417.860.89542258.860.94743379.860.9938769
5.870.76863816.870.83695677.87

Thursday, May 9

Write a Mixed Decimal


Mixed number: Mixed number is formed by associating a whole number with fraction numbers.

Decimal number: A number along decimal a point in it is called decimal number.

Mixed decimal number:  A number having a decimal point in its mixed format is mixed decimal number.

Example: 7.5 `3/6`.  Let us see how to write mixed decimal number.


Writing a mixed decimal:

Write a mixed decimal:

In the whole number part of mixed number the decimal point appears show that the number is mixed decimal.

It should be written as,

133.63 `1/5`

Conversion of mixed decimal into fraction:

Step 1: First see how many numbers present after the decimal point.

Step 2: Calculate number of 10’s equal to the counted digits after the decimal point.

Step 3: Put number of 10’s as denominator and the number is mixed decimal number.

Step 4: Convert the numerator mixed decimal number into fraction.

Step 5: Now simplify the terms by a common term.

Example problems for writing a mixed decimal:

Example: 1

Write the following mixed decimal number into fraction number.

12.5 2/3

Solution:

Given, mixed decimal number =12.5 2/3.

We have to add the 10 as the denominator and the mixed decimal number as numerator.

That is, `(125 2/3)/10`

= `(377/3)/10`

= `377/30`

=12`17/30`

Example: 2

Write the following mixed decimal number into fraction number.

5.22 1/2

Solution:

Given, mixed decimal number =5.22 1/2.

We have to add the 100 as the denominator and the mixed decimal number as numerator.

That is, `(522 1/2)/100`

= `(1045/2)/100`

= `1045/200`

=`209/20`

=1`9/20` .

Example: 3

Write the following mixed decimal number into fraction number.

15.123 1/5

Solution:

Given, mixed decimal number =15.123 1/5.

We have to add the 1000 as the denominator and the mixed decimal number as numerator.

That is, `(15123 1/5)/1000`

= `(75616/5)/1000`

= `75616/5000`

= 25 `616/5000`

= 25 `77/625` .

Answer: 25 `77/625` .

Practice problems for write a mixed decimal number:

Problem: 1

Write the following mixed decimal into mixed number.

5.9 3/4

Answer: 5`39/40`.

Problem: 2

Write the following mixed decimal into mixed number.

5.633 1/2 .

Answer: 5`1267/2000`.

Hypothesis Testing Variance


Hypothesis testing is the use of statistics  found in the probability that a specified hypothesis is correct. Hypothesis is specified as declaration which may or may not be accurate. In statistics two hypothesis testing are used. They are null hypothesis and alternative hypothesis. These two hypothesis tested are opposed to each other. In statistics the significance level is symbolized through alpha. Let us see about the probability of hypothesis testing variance.

Hypothesis testing variance

There are five constituent to either statistical test:

Null Hypothesis

Alternate Hypothesis

Test Statistic

Level of significance

Conclusion

Hypothesis testing variance

Consider the population is standard, we are able to test the variance of the method using the chi-square distribution through (n – 1) degrees of freedom.

To test a variance or standard deviation of a population to be exact normally distributed, we can utilize the χ2–test.

The χ2- test for a variance or standard deviation is not as robust as the samples for the population mean otherwise the population proportion.

Therefore it is necessary to while performing the χ2–test used for a variance that the population is usually circulated. The results can be deceptive if the population is not standard.

Examples for hypothesis testing variance

χ2- test for population variance

In a sample of size 16 drawn from a normal population standard deviation is 4 can you say that population standard deviation is 5.

Solution

Null hypothesis:

H0: The population standard deviation is 5

Test statistic:

χ2   =`(ns^2)/sigma^2` ~ χ2n-1

Level of significance:

α= 0.05 at 5% level of χ2  table values for 16 degrees of freedom is 24.996

Calculation:

n = 16, s = 4, σ = 5

χ2   =`(16xx16)/25 = 256/25`

χ2   = 10.24

Calculated value = 10.24

Table value = 24.996

Calculated value < Table value

Therefore the null hypothesis is accepted.

The population standard deviation is 5

Result

The population standard deviation is 5

Wednesday, May 8

Whole Set Fraction


This article is about whole set fraction. Whole set fraction is nothing but it is about the set of fractions. A fraction is a number that can be represented by an ordered pair of whole numbers `a/b` where `b!= 0`. Here a is represented as numerator and b as denominator. The tutors in tutor vista are always ready to help the students in any topics like whole set fraction. The online tutors help students in online. Tutor vista is the best tutoring website where many students follow this. Below we can see about the whole set of fraction.

whole set fractions

In set notation, the set of fractions is

F ={ `a/b` where a and b are whole numbers,  b` !=` 0 }

Two fractions that represent the same relative amount are termed to be equivalent fractions.

Proper Fraction:

When the numerator is less than the denominator then those fractions are called as Proper fraction.

Example: `2/3 `

Improper fraction:

When the numerator is greater than the denominator then this fraction is called as Improper fraction

Example: `7/5`

All the integers are simply a improper fraction

Example

3 is nothing but `3 / 1` which is an improper fraction

Mixed fraction:

Mixed fraction is a whole number with proper fraction

Example:  2 `1/3`

whole set fractions

Example 1:

Add `5/3`  + ` 8/3`

Here both the denominator is same

Add numerator alone.

`(5+8)/3`

`13/3`

Adding improper fraction with different denominator

Example 2:

Add `5/2`  + `4/3`

Here find LCM and solve to make the denominator equal

LCM of 2 and 3 is 6

`(5xx3)/ (2xx3) = 15/6`

`(4xx2)/ (3xx2) = 8/6`

So `(15+8)/6 = 23/6`

whole set fractions

Example 3: Add `3/11` +`6/11`

Solution

Here the denominators are same. So just add the numerator alone

` (3+6)/11`

`9/11` is the answer.

Example 4: Subtract `8/9` – `4/9`

Solution

Here the denominators are same. So just subtract the numerator alone.

`(8 - 4)/9`

`4/9`

Example 5: Multiply` 3/5` x `3/ 4 `

Solution

`3 / 5 ` x `3 / 4`

`(3xx3)/(5xx4) `

= `9 / 20 `

Sunday, May 5

Addition Angle Formulas


Addition angle formula is based on trigonometric functions. We are having  the addition angle formulas to find the value of  the trigonometric equations and values for the trigonometric angles.
                         Cos (A+B) = Cos A Cos B - Sin A Sin B
                         Cos (A-B) = Cos A Cos B + Sin A Sin B
                         Sin (A+B) = Sin A Cos B + Cos A Sin B
                         Sin (A-B) = Sin A Cos B - Cos A Sin B
                         Tan (A+B) = `(Tan A + Tan B)/(1 - Tan A Tan B)`
                         Tan (A-B) =  `(Tan A - Tan B)/(1 + Tan A Tan B)`
                         Here we will some problems based on addition angle formulas.

Addition Angle Problems:


Problem 1:
         Solve the following trigonometric function using Addition angle formula Sin 75o
Solution:
            Sin 75o
                 We can write sin 75o as Sin (45o + 30o)
                              We have the formula for Sin (A+B) = Sin A Cos B + Cos A Sin B
                              Where A = 45o and  B = 30o
                              Sin 45o = Cos 45 = `(1)/(sqrt(2))`
                              Sin 30 = `(1)/(2)`    Cos 30 = `(sqrt(3))/(2)`
                              Sin (45o + 30o) = Sin 45o Cos 30o + Cos 45o Sin 30o
                                                          =  `(1)/(sqrt(2))` `(sqrt(3))/(2)` `(1)/(sqrt(2))` `(1)/(2)`
                                                          = `(sqrt(3))/(2sqrt(2))` + `(1)/(2sqrt(2))`
                                                          = `(sqrt(3)+1)/(2sqrt(2))`
Problem 2:
       Solve the following trigonometric function using Addition angle formula Cos 135o
Solution:
               Cos 135o
                We can write Cos 135o as Sin (90o + 45o)
                              We have the formula for Cos (A+B) = Cos A Cos B - Sin A Sin B
                              Where A = 90o and  B = 45o
                              Sin 45o = Cos 45 = `(1)/(sqrt(2))`
                              Sin 90o = 1  Cos 90o = 0
                              Cos (90o + 45o) = Cos 90o Cos 45o - Sin 90o Sin 45o
                                                      = 0 . `(1)/(sqrt(2))` - 1 . `(1)/(sqrt(2))`
                                                      = 0 - `(1)/(sqrt(2))`
                                                      = - `(1)/(sqrt(2))`

Problem 3:


       Solve the following trigonometric function using Addition angle formula Tan 135o
Solution:
               Tan 135o
               We can write Tan 135o as Tan (180o - 45o)
                              We have the formula Tan (A - B) = `(Tan A - Tan B)/(1 + Tan A Tan B)`
                              Where A = 180o and  B = 45o
                              Tan 45o = 1 Tan 180o = 0
                              Tan 135o = `(Tan 180^o - Tan 45^o)/(1 + Tan 180^o Tan 45^o)`
                              Tan 135o = `"(0 - 1)/(1 + (0) (1)) `
                              Tan 135o = `(- 1)/(1)`
                              Tan 135o = -1

Saturday, May 4

Compute Percentages


In mathematics, a percentage is a way of expressing a number as a fraction of 100 (per cent meaning "per hundred" in French). It is often denoted using the percent sign, "%", or the abbreviation "pct". For example, 45% (read as "forty-five percent") is equal to 45 / 100, or 0.45. Let us see how to do percentages.                                                                                                                                           - Source from Wikipedia

How to compute percentages:


STEP 1: While begin the percentage` x / 100 ` = `(is) / (of)` . Out of hundred x may be the percentage, "is" denotes as fraction, and "of" denotes as whole.
STEP 2: If we are having the questions 80 : 40 percentage then we will write it as X = 40, is = 40 ("80 is"), and then of = as unknown value. Now the value is possible to write like this `40 / 100 ` = `80 / x` .
STEP 3: Let us do the cross multiplication. Now we can get a Constant value on 1 side and then multiply it with another side. Now we will get a result likes this 40x = 8,000.
STEP 4: Now you have to find out the x value. Where, x = `8000 / 40` = 200, now the x value will be 200.

How do you solve percentages some examples here:


Problem 1:
           In a question paper there is 80 questions. Laura took that test. If she gets 75% correct, how many questions did Laura missed?
Solution:
            Therefore total correct answers are 75% of 80 or else `75 / 100` × 80
            ` 75 / 100` × 80 = 60%
            So the question paper contains 80 questions and Laura got 60 exact answers, the number of questions Laura left is 80 − 60 = 20.
            Therefore Laura missed 20 questions.
Problem 2:
            Compute this, what is 85% of 15?
Solution:
Step 1: Compute the percent.
           The percent value is 85.
            P = 85
Step 2: Find out the base.
           The base is the number next the word OF, 15
            b = 15
Step 3: Identify the quantity.
           The calculation is the unknown.
            a =?
Step 4: Enter the value in the percent proportion formula.
         `a/ 15` = `85 / 100`
Step 5: Exercises the equation for the unknown.
           The Least Common Divisible of 15 and 100 is 100
     `100 / 1` * `a / 15` = `100 / 1` * `85 / 100`
            6.6a = 85
          ` (6.6a) / (6.6)` = `85 / (6.6)`
            a = 12.8
            12.8 is 85% of 15.


Practice problem for compute percentages:
Problem 1:
            What is the percentage of 67%?
Solution:
             = 0. 67.
Problem 2:
            What is percentage of 87% of 18?
Solution:
             = 15.66
            Therefore 15.66 is 87% of 18.