Addition angle formula is based on trigonometric functions. We are having the addition angle formulas to find the value of the trigonometric equations and values for the trigonometric angles.
Cos (A+B) = Cos A Cos B - Sin A Sin B
Cos (A-B) = Cos A Cos B + Sin A Sin B
Sin (A+B) = Sin A Cos B + Cos A Sin B
Sin (A-B) = Sin A Cos B - Cos A Sin B
Tan (A+B) = `(Tan A + Tan B)/(1 - Tan A Tan B)`
Tan (A-B) = `(Tan A - Tan B)/(1 + Tan A Tan B)`
Here we will some problems based on addition angle formulas.
Addition Angle Problems:
Problem 1:
Solve the following trigonometric function using Addition angle formula Sin 75o
Solution:
Sin 75o
We can write sin 75o as Sin (45o + 30o)
We have the formula for Sin (A+B) = Sin A Cos B + Cos A Sin B
Where A = 45o and B = 30o
Sin 45o = Cos 45 = `(1)/(sqrt(2))`
Sin 30 = `(1)/(2)` Cos 30 = `(sqrt(3))/(2)`
Sin (45o + 30o) = Sin 45o Cos 30o + Cos 45o Sin 30o
= `(1)/(sqrt(2))` `(sqrt(3))/(2)` `(1)/(sqrt(2))` `(1)/(2)`
= `(sqrt(3))/(2sqrt(2))` + `(1)/(2sqrt(2))`
= `(sqrt(3)+1)/(2sqrt(2))`
Problem 2:
Solve the following trigonometric function using Addition angle formula Cos 135o
Solution:
Cos 135o
We can write Cos 135o as Sin (90o + 45o)
We have the formula for Cos (A+B) = Cos A Cos B - Sin A Sin B
Where A = 90o and B = 45o
Sin 45o = Cos 45 = `(1)/(sqrt(2))`
Sin 90o = 1 Cos 90o = 0
Cos (90o + 45o) = Cos 90o Cos 45o - Sin 90o Sin 45o
= 0 . `(1)/(sqrt(2))` - 1 . `(1)/(sqrt(2))`
= 0 - `(1)/(sqrt(2))`
= - `(1)/(sqrt(2))`
Problem 3:
Solve the following trigonometric function using Addition angle formula Tan 135o
Solution:
Tan 135o
We can write Tan 135o as Tan (180o - 45o)
We have the formula Tan (A - B) = `(Tan A - Tan B)/(1 + Tan A Tan B)`
Where A = 180o and B = 45o
Tan 45o = 1 Tan 180o = 0
Tan 135o = `(Tan 180^o - Tan 45^o)/(1 + Tan 180^o Tan 45^o)`
Tan 135o = `"(0 - 1)/(1 + (0) (1)) `
Tan 135o = `(- 1)/(1)`
Tan 135o = -1