Wednesday, March 13

Geometry Area and Volume


Geometry” Earth-measuring" is an part of the mathematics concerned with questions of size, shape, relative position of figures, and the properties of space. Geometry is one of the oldest sciences. Initially a body of the  practical knowledge concerning lengths, areas, and volumes. And now we can see about the problems in geometry area and volume.

Geometry area and volume problem 1:

Pro 1 :Find the volume of cylinder with the radius 8 cm and the height 12 cm.

Solution:We can find the volume of  an cylinder by using the following formula:

Volume of cylinder V=πr2h

Substitute the values of r and h into the above formula. Than, we get

V=π*82*12

=3.14*64*12

=2411.52 cm3

Pro 2 :Find the volume of sphere with the radius is 12 cm.

Solution:We can find the volume of  the sphere by using the following formula

Volume of sphere V= (4/3) πr3

Substitute the value of radius into the above formula. Then we get,

V= (4/3) *3.14*123

= 1.333*3.14*144

= 602.72 cm3

Ans: 602.72 cm3

Problem 3:Find the amount of pyramid with the base 8.2 mt and height 10.2 mt.

Solution:We can find the volume of  the pyramid by using the following formula

Volume of pyramid V= (1/3) b h

Substitute the values of  the base and height into the above formula. Then we get,

V= (1/3)*8.2*10.2

=0.333*8.2*10.2

=27.8521 mt3

Ans: 27.8521 mt3

Geometry - Find the volume of shapes when area is given

Find the volume of the right prism whose area of the base is 550 cm2 and height is 38cm



Solution:Given that area of the base, A = 550 cm2 and height (h) of the prism = 38 cm

Volume of the right prism = area of the base * height cu.units

= A * h

= 20900

Volume of right prism = 20900 cm3

Find the volume of the right prism whose area of the base is 450 cm2 and height is 34cm

Solution:Given that area of the base, A = 450 cm2 and height (h) of the prism = 34 cm

Volume of the right prism = area of the base * height cu.units

= A * h

= 15300

Tutoring About Correlation Coefficient


Concept of correlation:

Correlation is a method of studying the relationship between the two variables. In statistical analysis we come across the study of two variables wherein the change in the value of one variable produces a change in the value of other variable. In that case we say that the variables are correlated or there is a correlation between the two variables.

The formula for the correlation coefficient r can be expressed in the form,

r = `(sum (X - barX) ( Y - barY))/(sqrt(sum (X - barX)^2) sqrt(sum(Y - barY)^2))`

It is conventionally taken as x = X - X and y = Y - Y and hence we write

r = `(sum xy)/(sqrt(sum x^2) sqrt(sum y^2))`

The above formula is expressed in terms of deviations of the variables from their means. Instead, if the actual values of the observations are taken then the formula can be written as,

r= `(N sum XY - sum X sum Y)/(sqrt(N sum X^2 - (sumX)^2) sqrt(NsumY^2 - (sum Y)^2))`

Instead of the deviations from their means, the deviations are measured from the value A and B for X and Y variables by taking dx = X - A, dy = Y - B, the correlation coefficient r is given by,

r = `(N sumdxdy - sumdx.sumdy)/(sqrt(Nsumdx^2- (sumdx)^2) sqrt(Nsumdy^2 - (sumdy)^2))`

Tutoring about formulas for calculating correlation coefficient:

r = `(sum xy)/(sqrt(sum x^2) sqrt(sum y^2))`

This formula is used when deviations are measured from their mean.
r= `"(N sum XY - sum X sum Y)/(sqrt(N sum X^2 - (sumX)^2)(sqrt(N sum Y^2 - (sumY)^2))) `

This formula is used if no assumed average is taken for x and y series
r = `"(N sumdxdy - sumdx.sumdy)/(sqrt(Nsumdx^2- (sumdx)^2)(sqrtNsumdy^2 - (sumdy)^2)) `

This formula is applied when deviations for x and y series are taken from some assumed values.


Tutoring on problems on correlation coefficient::

Calculate the correlation coefficient between x and y from the following data:
x 1 3 5 8 9 10
y 3 4 8 10 12 11


Solution:
x y x - `barx` y - `bary` (x - `barx` )2 (y - `bary` )2 (x-`barx` )(y - `bary` )
1 3 -5 -5 25 25 25
3 4 -3 -4 9 16 12
5 8 -1 0 1 0 0
8 10 2 2 4 4 4
9 12 3 4 9 16 12
10 11 4 3 16 9 12
36 48 0 0 64 70 65


`barx` = `(sum x)/(n)` = 36/6 = 6

`bary` = `(sum y)/(n)` = 48/6 = 8

r = `(sum(x- barx)(y - bary))/(sqrt(sum(x-barx)^2)sqrt(sum(y-bary)^2))`

= `(sum xy)/(sqrt(sumx^2)sqrt(sumy^2))`

= `(65)/(sqrt(64)sqrt(70))` = 0.97

Monday, March 11

Limit of a Function


Students can study about Limit of a Function here. Consider the function f(x). Let the independent variable x take values near a given constant a. Then f(x) takes a corresponding set of values. Suppose that when x is close to a, the values of f(x) are close to some constant. Suppose f(x) can be made to differ arbitrarily small from A by taking values of x that are sufficiently close to a but not equal to a and that is true for all such values of x. Then f(x) is said to approach limit A as x approaches a.

If the function f(x) approaches a constant A when x approaches a in whatever manner without assuming the value a, A is said to be the limit of f(x) as x approaches a. Thus we write lim_(x->a) f(x) = A

Find the Limit of a Function

Students can learn to Find the Limit of a Function if they know what Functions are and how they behave at the given limits.

A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case the limit is not defined but the right and left hand limit exists.

The right hand limit of a function is the value of the function approaches when the variable approaches its limit from the right. Here, we write lim_(x->a^+) f(x) = A+

The left hand limit of a function is the value of the function approaches when the variable approaches its limit from the left.

here, we write lim_(x->a^-) f(x) = A-

The limit of a function exists if and only if the left hand limit = right hand limit.

In that case, lim_(x->a^+) f(x) = lim_(x->a^-) f(x) = f(x)

Properties of limit of a function

The following are some of the properties of limits which are useful in evaluating the limit of a function.

1. lim_(x->a) k = k ( k is a constant)

2. lim_(x->a) [f(x) ± g(x)] =  lim_(x->a) f(x) ± lim_(x->a) g(x)

3. lim_(x->oo) [f(x).g(x)] = lim_(x->oo) f(x) . lim_(x->oo) g(x)

4. lim_(x->a) (f(x))/(g(x)) = (lim_(x->a)f(x))/(lim_(x->a)g(x))

5. lim_(x->a) [f(x)]n =  [ lim_(x->a) f(x)]n

Standard limit theorems:

1. lim_(x->a) (x^n- a^n)/(x - a) = nan-1

2. lim_(x->0) (e^x-1)/(x) = 1

3. lim_(x->0) (sin x)/(x) = 1

4. lim_(x->0) (1 + (1)/(n))^(n) = e



Solved Examples

Example 1: Evaluate the right hand limit of the function

f(x) = {│x – 4│/x – 4, x ≠ 4, 0 x = 4

at x = 4

Sol: (RHL of f(x) at x = 4)

= lim f(x) = lim f(4 + h) = lim │4+ h – 4│4 + h – 4

x→4+      h→0             h→0

= lim │h│/h = lim h/h = lim 1 = 1

h→0            h→0      h→0

Example 2: Let f be the function given by f(x) = x2 – a2/x – a, x ≠ a

Using (in , δ) definition show that lim f(x) = 2a

x → 0

Sol: Let in > 0 be given. In order to show that

lim f(xi) = 2a

x → a

We have to show that that for any given in > 0, there exists a number δ >0 such that

│f(x) – 2a│< in whenever 0 < │x – a│< δ

If x ≠ a, then │f(x) – 2a│= │x3 – a2/x – a│

= │(x + a) – 2a│                                         [... x ≠ a]

= │x – a│

... │f(x) – 2a│< in , if │x – a│< in

Choosing a number δ such that 0 < δ < in , we have

│f(x) – 2a│< in when whenever 0 < │x – a│< δ

Hence    lim f(x) = 2a

x → 0

Standard Deviation in Statistics


Statistics is a division of applied mathematics which contracts with the particular interpolation of data. The term ‘Statistics’ has been taken from the Latin name ‘Status’ in which it defines ‘political state’. This statistics mainly used to measure the arithmetic mean, median, mode and standard deviation. This measurement gives idea about where the data points are centered. Let us discuss about standard deviation with some example problems.

Evaluation of Standard Deviation in statistics:

Mean:

In Statistics, Mean is defined as the average of the given total numbers, i.e., total number of data divided by the number of data set given.

Formula for finding mean,

barx   = (sum(x))/(n)

Standard Deviation:

In Statistics, Standard Deviation is the measure of describing squared mean difference variability and spread of the Data set in the given total numbers. It is used to take the measurement of taking square root and average of numbers in the Data set.

Formula for standard deviation,

S =  sqrt ((sum(x - barx)^2 )/ (n-1))

Here Standard Deviation is calculated by using the mean Value  barx

Example Problems to find standard deviation in statistics :

Problem 1:

Here are 4 measurements   66, 45, 67, 45, 34, 56, 78 and 57. Calculate statistics standard deviation for the given measurements

Sol:

Mean: Calculate the mean the using the formula,

barx   = (sum(x)) / n

barx   =( 66+45+67+45+34+56+78+57) / 8

= 448 / 8

barx   = 56

Standard Deviation,

S = sqrt((sum(x-barx)^2) / (n-1) )

S = sqrt((( 66-56)^2+(45-56)^2+(67-56)^2+(45-56)^2+(34-56)^2+(56-56)^2+(78-56)^2+(57-56)^2) / (8-1))

= sqrt((100+121+121+121+484+0+484+1)/7)

=  sqrt( 1432 / 7)

S = sqrt(204.571429)

Standard Deviation S =  14.3028469

Problem 2:

Find the Statistics Standard deviation of the given Data 16, 17, 18, 20 and 24

Sol:

Mean: Calculate the mean using the formula,

barx   = (sum(x)) / n

barx  = ( 16 + 17 + 18 + 20 + 24 ) / 5

barx = 95 / 5

barx = 19

X               x-barx              (x-barx )^2

6               16 - 19 = -3           9

7               17 - 19 = -2           4

8               18 - 19 = -1           1

9               20 - 19 =  1           1

10              21 - 19 =  2           4

Sum of the  (x-barx)^2

9+4+1+1+4 = 19

Standard Deviation: Calculate the standard deviation

S =   sqrt((sum(x- barx)^2 ) / (n-1))

S = sqrt( ( 9+4+1+1+4) / 4 )

S = sqrt (19 / 4 )

S = sqrt(4.75 )

S = 2.17944947

Practice Problems for Statistics Standard Deviation:

1. Find the statistics standard deviation for the following given data.37, 56, 54, 54, 26, 67, 12, 65 and 34.

Answer:                     Mean = 45

Standard Deviation = 18.714967272213

2. Calculate the statistics standard deviation for the following. 77, 56, 33, 87, 90, 23, 67, 80 and 99.

Answer:                    Mean = 68

Standard Deviation = 26.043233286211

Friday, March 8

Study Online Second Derivatives


Study online second derivatives involves the process differentiating the given polynomial function twice with respect to the given variables whereas all the process is clearly explained with the help of online. Generally the second derivative is discussed in calculus whereas it is mainly helps to find the rate of change of the given function with respect to the change in the input. The following are the solved example problems with detailed step by step solution for second derivatives study discussed in online.

Example 1:

Determine the second derivative from the polynomial.

f(b) = 5b 2 +5b 4  + 12

Solution:

The given function is

f(b) = 5b 2 +5b 4  + 12

The above function is differentiated with respect to b to find the first derivative

f '(b) = 5(2b  )+5(4 b 3 ) + 0

By solving above terms

f '(b) = 10b +20b3

The above function is again differentiated with respect to b to find second derivative

f ''(b) =  10(1 ) +20(3b2)

f ''(b) =  10 + 60b2 is the answer.

Example 2:

Determine the second derivative from the polynomial.

f(b) = 4b4 +5b 5 +6b 6  + 2b

Solution:

The given function is

f(b) = 4b4 +5b 5 +6b 6  + 2b

The above function is differentiated with respect to b to find the first derivative

f '(b) = 4(4b 3 )+5(5b 4 ) +6( 6b 5) +2

By solving above terms

f '(b) = 16b 3 +25b 4 +36 b 5 + 2

The above function is again differentiated with respect to b to find second derivative

f ''(b)= 16(3b 2) +25(4b 3) +36 (5b 4)

f ''(b)= 48b 2 +100b 3 +180b 4 is the answer.

Example 3:

Determine the second derivative from the polynomial.

f(b) = 2b6 + 2 b5 + 3 b4 + 3b

Solution:

The given equation is

f(b) = 2b6 + 2 b5 + 3 b4 + 3b

The above function is differentiated with respect to b to find the first derivative

f '(b) =  2(6b 5)  +2 (5 b4 ) +3(4 b3) + 3

By solving above terms

f '(b) =  12b 5  +  10b4  + 12 b3 – 3

The above function is again differentiated with respect to b to find second derivative

f ''(b) =  12(5b 4 ) – 10(4b3)  + 12(3b2)

f ''(b) =  60b 4 – 40b3 +36b2  is the answer.

Online second derivatives practice problems for study:

1) Determine the second derivative from the polynomial.

f(b) = b 3 + b 4 + b 5

Answer: f ''(b) = 6b +12b2+ 20b 3

2) Determine the second derivative from the polynomial.

f(b) = 2b 3+3b5 + 4b 6

Answer: f ''(b) = 12b + 60b3 + 120 b 4

Solving Negative Number


Definition:

Negative number is defined as the number which indicate by negative sign or minus ('-') . Negative number is less then zero and placed left to zero.

Ex: ...-5,-4,-3,-2,-1,0,1,2,3,4...

Comparison of Positive and Negative:

For each negative number , there is a positive number that is its opposite . Here we can write the opposite of negative number with a positive of same number or plus sign used In front of the number and call these numbers are positive numbers. Ex : 1,2,3 ,.....positive numbers are grater than zero. Similarly, the opposite of any positive number is a negative number .

Ex:    1,2,3 is -1,-2,-3.

Solving examples for negative numbers:

Zero cannot be taken as a negative number or positive number.
For every positive number x, there exists a negative number y such that x + y = 0
Positive number is denoted as plus ('+')sign and negative number is denoted as minus sign('-').
Example of negative number:-2,-43,-34 and example for positive number is 2,43,34.
negative and positive number may be written as mixed numbers or fraction numbers.

The equal fraction of negative numbers are given bellow:

(-3)/7,3/(-7),-(3/7) and -3/7 .

The equal mixed numbers are given bellow.

-2/5,-(2/5)       (-4)/9, 4/-(9) and -4/9

More about solving negative numbers:

Solving Addition of Negative Numbers:

To add the negative numbers which consist of minus sign. To provide the answer of addition of negative number.

Solving examples for addition negative numbers:

-12+(-6)=?

Solution:

-12+(-6)= -18.

Here the values of  -12 and -6are 12 and 6 adding the smaller from the larger gives -12+(-6)= -18, and since the larger  value was 12, so we can give result the same sign as -12, '-' so -12+(-6)= -18.

Example:

(-6) + (-6) = ?

Here the absolute values of -6 and -6 are 6 and 6.  Adding the smaller from the larger gives -6 - 6 = 12 ,  but here both has same value . In this case sign is the matter, here 12 and -12 are the not same and then -6 and -6 are same numbers. The property of all same number sum is 12. The addition of two number up to zero are called as additive inverses.

Multiplying Negative Numbers:

Solving example for multiplying negative numbers :

Product of negative number ,here we can take the product of their values.

(-3.3) × (-5) = ?


(-3.3) × (-5) = (-3.3) × (-5)

= (-3.3) × (-5)

=  +16.5.
Dividing Negative Numbers

Solving example for dividing negative number:

To divide two negative numbers, here we can divide the value of the first by the value of the second.

(-1.6) ÷ (-4) = (-1.6) ÷ (-4)

= (-1.6) ÷ (-4)

=  -0.4

Thursday, March 7

Geometry Without Common Vertices


In geometry, some figures have common vertices. Mostly the geometric figures are without common vertices. If a triangle, quadrilateral and some geometric figures in a graph are lying without common vertices are refered same. In graph there are four quadrants in that some vertices are fall on common vertices, with out common vertices points of are plotted.

Geometric figure without common vertices

Without common vertices find the distance of two points

In geometry the triangle has three vertices; the vertices are not common vertices. The common vertices are formed only if two triangles are in same point without three common vertices. The distance between two un common vertices are find out by using the coordinates of the vertices (x1,x2) and (x2,x2) of the vertices.

Distance between two vertices = √(x2-x1)2 +(y2-y1)2

If the geometry figure having the common vertices in a graph



Examples for without common vertices

Distance of a vertices are find using distance formula:

Examples for distance between two vertices:

Ex 1:   Find the distance formed by without common vertices, Vertices A(4,5), B(7,4)

Sol :            Distance AB = √(x2-x1)2 +(y2-y1)2

X1=4    X2=7    Y1=5    Y2=4

AB = √(7-4)2+(4-5)2

= √(3)2+ (-1)2

= √9+1

= √10 units

Ex 2 :  Find the distance formed by without common vertices, Vertices A(3,2), B(5,4)

Sol :            Distance AB = √(x2-x1)2 +(y2-y1)2

X1=3    X2=5    Y1=2    Y2=4

AB = √(5-3)2+(4-2)2

= √(2)2+ (2)2

= √4+4

= √8 units

Ex 3 :      Find the distance formed by without common vertices, Vertices A(6,4), B(10,8)

Sol :            Distance AB = √(x2-x1)2 +(y2-y1)2

X1=6    X2=10    Y1=4    Y2=8

AB = √(10-6)2+(8-4)2

= √(4)2+ (4)2

= √16+16

= √32 units

Ex 4:    Find the distance formed by without common vertices, Vertices A(3,3), B(4,8)

Sol :            Distance AB = √(x2-x1)2 +(y2-y1)2

X1=3    X2=4    Y1=3    Y2=8

AB = √(4-3)2+(8-3)2

= √(1)2+ (5)2

= √1+25

= √26 units

Practice problems:

Q 1   Find the distance of two vertices A(1,1) B(1,2)   Answer: √1 units

Q 2   Find the distance of two vertices A(2,2) B(1,1)   Answer: √2 units