Definition :
The algebraic sum of two or more angles is called a ' compound angle ' .
If A , B , C are angles , then A + B , A - B , A + B - C , A - B + C , A + B + C , etc., are compound angles .
Formulas
cos(A + B) = cosA cosB - sinA sinB for all A , B in R .
cos(A - B) = cosA cosB + sinA sinB for all A , B in R .
sin(A + B) = sinA cosB + cosA sinB for all A , B in R.
sin(A - B) = sinA cosB - cosA sinB for all A , B in R.
tan(A + B) = (tanA+tanB)/(1-tanAtanB) if none of A , B , A + B is an odd multiple of (pi)/2 .
cot(A + B) = (cotBcotA-1)/(cotB+cotA) if none of A , B , A + B is an odd multiple of (pi)/2 .
tan(A - B) = (tanA-tanB)/(1+tanAtanB) if none of A , B , A - B is an odd multiple of (pi)/2.
cot(A - B) = (cotBcotA+1)/(cotB-cotA) if none of A , B , A + B is an odd multiple of (pi)/2.
sin(A + B) sin(A - B) = sin2A - sin2B = cos2B - cos2A .
cos(A + B) cos(A - B) = cos2A - sin2B = cos2B - sin2A
Solved Problems on Trigonometric Ratios of Compound Angles
1) Find the value of sin 105o and cos 165o .
Sol: sin 105o = sin (45o + 60o)
= sin45o cos60o + cos45o sin60o
= (1/sqrt(2)) (1/2) + (1/sqrt(2)) (sqrt(3)/2)
sin105o = (sqrt(3)+1)/(2sqrt(2))
Now , cos165o = cos (180o - 15o) = - cos15o
= - cos(45o - 30o)
= - [ cos45o cos30o + sin 45o sin 30o]
= -[(1/sqrt(2))(sqrt(3)/2)+(1/sqrt(2))(1/2)]
cos 165o = -(sqrt(3)+1)/(2sqrt(2))
2) Show that cos42o + cos78o + cos162o = 0 .
Solution : cos42o + cos78o + cos162o
= cos (60o - 18o) + cos(60o + 18o) + cos(180o - 18o)
= (cos60o cos18o + sin60o sin18o) + (cos60ocos18o - sin60o sin18o) - cos18o
= 2 cos60ocos18o - cos18o
= 2(1/2) cos18o - cos18o = 0
More Problems on Trigonometric Ratios of Compound Angles:
1)Find the values of sin 15o , cos 15o , tan15o
Sol:
sin15o = sin (60o - 45o) = sin 60o cos45o - cos60o sin45o
= (sqrt(3)/2)(1/sqrt(2)) - (1/2)(1/sqrt(2))
sin 15o = (sqrt(3)-1)/(2sqrt(2))
cos 15o = cos(60o - 45o) = cos60o cos45o + sin60o sin45o
= (1/2)(1/(sqrt(2))) + (sqrt(3)/2)(1/sqrt(2))
cos15o = (sqrt(3)+1)/(2sqrt(2))
tan15o = tan(60o - 45o) = (tan60^o-tan45^o)/(1+tan60^otan45^o)
= (sqrt(3)-1)/(2sqrt(2))
tan15o = 2 - sqrt(3)
2) Show that cos100o cos40o + sin100o sin40o = 1/2
Solution : cos100o cos40o + sin100o sin40o
The above equation is in the form of cosA cosB + sinA sinB which is equal to cos(A - B)
Here A = 100o and B = 40o
cos(A - B) = cos(100o - 40o)
= cos(60o)
= 1/2
Hence cos100o cos40o + sin100o sin40o = 1/2
No comments:
Post a Comment